

XSL Editor Prototype
by

Lindsay D. Grace

A proposal for a final project to be submitted

 in partial fulfillment of the requirements

for the degree of

Masters Degree in Computer Information Systems (MSCIS)

Northwestern University

2003

Advisor: Dr. Chang Miao
Submitted: August 13, 2003

 2

 3

Table of Contents

Abstract

Background: Problem Statement 1

 Overview of Technologies 3
 XML Fundamentals 6
 XML Syntax Fundamentals 5
 XML Validity 7

 XSL 7
 XPath 8

 XML Schema Fundamentals 9
 XML Parsers 10
 DTD 11
 XML Schema 11
 Document Object Model 12
 Simple API for XML 13

XHTML 14
Ancillary Technologies 16

Relevance and Significance of Research 18

 The Solution Described 18

 Comparison of Related Products 19
 XML Spy
 Stylevision 23
 Sonic Stylus Studio 25
 Open Source Initiatives 27

 Product Benefits 29

Research Findings and Design 33

Software Design 33
 XML Data Source 33
 Microsoft Component Object Model 35

The Implementation 37

Product Description 40

Graphical User Interface Design 40

 4

Building the Graphic Design Elements 46

 Using the Program 48

 Using the Editor: Basic Walkthrough 52

Research Findings and Limitations 54

 Test Case Scenarios and Descriptions 54

Creating a New File 54
 Editing an Existing File 55

 Limitations in Scope
 Design and Development 57
 Implementation 65

Summary 69

Project Source Code
 Appendix A

Annotated Bibliography

 5

List of Figures

Table
 Page
Table1: Core Goals of XML 5

Figures
 Page

Figure 1: Sample of Well:Formed XML 6
Figure 2: Sample of XML, not Well Formed 6
Figure 3: Screen Shot of XMLSpy® IDE 19
Figure 4: Screen Shot of StyleVision™ IDE 23
Figure 5: Screen Shot of Stylus Studio IDE 25
Figure 6: Sample XSL Fragment from XSL Tag Library 38
Figure 7: Screen Shot of the XSL Editor 40
Figure 8: Screen Shot of XSL Editor Right Panel 42
Figure 9: XML Schema Resource Screen Shot of XSL Editor 43
Figure 10: Markup Resource Screen Shot of XSL Editor 43
Figure 11: XSL Resource Screen Shot of XSL Editor Panel 44
Figure 12: XML Editor Status panel 45

 6

 Background: Problem Statement and Goals

I believe that there is a general need and demand for an application that shields

developers from the intricacies of XSL development. In certain software development

projects, there is a need for simple, experiential development of XSL. Often,

development teams need a fast and imperfect solution to demonstrate plausibility, or to

understand the scope of their endeavors. Typically described as the colloquial quick and

dirty solution, it is a sometimes-common request in fledgling projects and prototypes.

Likewise, software development at small scales, such as personal web sites and

low traffic intranets, require simple, easily maintained and developed software. Intricate

integrated development environments (or IDEs) are more complex than these types of

solutions demands. Accordingly, in several technologies, simpler development

environments have succeeded by offering less detailed authoring control. Such software

capitalizes on simple visual interfaces and core capabilities.

In the world of static hypertext markup language (HTML), this is analogous to the

comparison of Macromedia’s Dreamweaver to Microsoft’s FrontPage software.

Dreamweaver represents a thorough incorporation of most HTML related technologies.

Dreamweaver allows authors full control in authoring. Nearly every element of an HTML

document can be specified through the application’s array of menus and toolbars. At the

 7

other end of the development spectrum, is Microsoft’s FrontPage. This tool is much

simpler and offers far less control over documents. The simplicity comes at the cost of

specificity. FrontPage makes many decisions for you, or simply does not provide a way

of completing certain tasks. Since FrontPage costs less than half as much as

Dreamweaver, FrontPage has a comfortable place in the industry. If your full-time job is

not to make superb HTML web pages, FrontPage does what you need it to, and it does so,

for less, and with less of a learning curve.

About seven years ago, the world of static HTML development seems to have

been at the same point XSL development is today. At that time, a large number of the

entry-level HTML editors were marketed not at the enterprise level developer, but at the

individual home user and entry-level developer. Such applications included Sausage

Software’s Hot Dog Pro, Microsoft’s Front Page Lite, and Netscape’s Composer. These

applications did not expose everything HTML was capable of, but they allowed people to

build HTML quickly and easily, without a full understanding of the language.

XSL is nearing the same level of maturity and seems primed for a set of

analogous products. Unfortunately, the leaders in the web page editing industry have not

been quick to jump at the task of creating XSL editing software for entry-level

developers. This project is a step in that direction.

 8

Overview of Technologies

Before fully discussing the benefits of this project, it is essential to discuss XSL

related technologies. The following sections outline the fundamentals of these

technologies.

XML Fundamentals

XML, or the extensible markup language, is a W3C recommended standard mark

up language designed to facilitate the communication of information between a wide

range of systems. XML has emerged as the standard means for communicating data in a

non-system specific way. Its historical roots are in Standard General Mark-Up Language

(SGML), which means it demonstrates some characteristics with the well-known HTML.

In essence, XML is a language consisting of tags and attributes. A tag is a unit of

description. An attribute describes a tag. An example tag may be <thesis>. Attributes of

the tag <thesis> may be written by and completed date. From both a syntactical and

conceptual perspective, attributes are contained within the tag. The tag’s content is

anything that sits between the beginning tag and the end tag. In our example, the start tag

may be described as <thesis> and the end tag as </thesis>. These tags describe data.

Anything inside the tag is the tag’s data. To that extent, HTML and XML are similar.

In implementation, it is the rules of XML that constitute XML. This includes not

only the syntax but also the form. Since XML is only a set of rules, it does not prescribe

 9

an exhaustive list of core tags, as does HTML. There are a few XML reserved tags that

provide standard information about an XML document, but these are not essential to the

successful use of an XML data source. XML authors, for all intensive purposes, define

their own tags based on a standard set forth by a standardizing body, an architect, or the

developer. This full flexibility and extensibility allows for semantically rich markup.

XML source data is typically contained within a text file. It conveys relationships

between its content by the relative placement of that content to other content within the

document. All that can be known about an XML document is known through its

structure and content. This is why XML has sometimes been coined a language of

relationships.

If XML has been modeled and authored well, an untrained eye will understand it.

Since it is a text-formatted document, it can also be parsed and understood by a wide

range of computer platforms and languages. Because XML has this wide range of

interoperability, it is excellent for the aggregation of data from multiple sources, and for

conversely disseminating information to multiple external clients. As noted in the

introduction to the W3C’s XML recommendation,” XML is also playing an increasingly

important role in the exchange of a wide variety of data on the Web and

elsewhere”(W3C).

 10

The core goals of XML as stated by the W3C recommendation are:

1.XML shall be straightforwardly usable over the Internet.
2.XML shall support a wide variety of applications.

3.XML shall be compatible with SGML [Standard Generalize Markup].

4.It shall be easy to write programs which process XML documents.

5.The number of optional features in XML is to be kept to the absolute minimum, ideally zero.

6.XML documents should be human-legible and reasonably clear.
7.The XML design should be prepared quickly.

8.The design of XML shall be formal and concise.

9.XML documents shall be easy to create.

10.Terseness in XML markup is of minimal importance. (W3C)

Namespaces are another important aspect of the XML recommendation. The

namespace is simply a means of associating an XML vocabulary with a context.

Consider the English word project. It can be used as a verb, as in, to project one’s voice,

or a noun, as in my software project. A namespace allows an author to indicate that the

word is being used as a verb or as noun. In other words, it would indicate that this

instance of project refers to the vocabulary of valid English nouns or valid English verbs.

When using the word project, you might declare these namespaces in your document, and

then specify to which of these namespaces (verb or noun) this project belongs.

Beginning XML reminds us that namespaces are a “purely abstract entity; it’s nothing

more than a group of names that belong with each other conceptually“ (Cagle, 68).

XML Syntax Fundamentals

XML is a language of relationships. Each element in the document has a

relationship to each other element in the document, and each node within the document

can be described as parent, child, or sibling to another element. Each tag should describe

(Table 1 – The Core Goals of XML)

 11

its content, and the nesting of tags should describe their relationships and the

relationships of the data.

XML’s ability to describe these relationships is supported by one core rule. This

is the rule of well-formedness. Any functional XML document must be well-formed.

This means that every beginning tag is closed in the order it was presented. If tags are

nested, then, internal tags must be closed before the parent tag is closed.

Consider the following sample XML code:

 <product>
 <description>Software</description>
 <productnumber>773412039</productnumber>
 </product>

This document is symmetrically labeled. Since XML is case sensitive, the closing

and end tags must have the same case. The following document segment is not well-

formed:

 <product>
 <description>Software</description>
 <productname >Microsoft Office
 <productnumber>773412039</productnumber>
 </PRODUCT>

(Figure 1 – Sample of Well-Formed XML)

(Figure 2 – Sample of XML, not Well Formed)

 12

This mark up lacks a closing tag for the <productname> element and the

<product> end tag does not have the same case as the <product> start tag. The document

segment does not adhere to the syntactical rules of XML, and would therefore not be

considered usable XML.

Other fundamental constraints of XML well-formedness include:

• All attribute values must be enclosed in double quotation marks
• Attribute names must not be repeated in the same element.
• XML special characters can not be used as XML data (e.g. <. >, &)

 When an XML document has met these criteria, it is considered “well-formed.”

If an XML document is not well-formed, it is not usable by XML parsers.

XML Validity

An XML document must also be valid. A valid XML document is one that

adheres to the rules of relationships and content specified by the XML schema. A

validating parser checks the validity of an XML document using the validation rules

specified in a separate document.

XSL

XSL, or the extensible style sheet language, is the standard means of reformatting

an XML document. Currently, XSL supports the transformation of XML data into a new

 13

XML, HTML, or text document. It is important to note that XSL is a language. A well

authored XSL typically contains logic, variables, and other artifacts of traditional

programming languages.

XSL syntactical rules are very similar to those of XML. All XSL documents must

be well-formed. XSL documents are typically validated against the XSL namespace. The

XSL namespace contains all of the valid XSL specific elements and attributes. There are

nearly one hundred XSL reserved keywords that define the syntactical language of XSL.

XSL is used on the client-side and the server side. Because parsing an XML

document and applying a stylesheet is a memory intensive process, XSL transformations

are most often executed on the server side. Server side transformation also means that

client machines see no change in the type of data them must consume.

XSL employs several other W3C standards for the retrieval and formatting of

XML documents. These are defined in the next few sections.

XPath

XPath is the query language used to extract data nodes from an XML document.

XPath’s basic syntax is much like DOS path, where each node in a tree is retrieved by

adding a back-slash to the node’s name (e.g. “C:\my documents\mydocument.doc”).

XPath developed as a more efficient method of retrieving data from an XML document.

 14

Although XPath contains many of the same syntactical requirements of XML and XSL, it

does have a separate recommendation by the W3C.

XML Schema Fundamentals

The valid relationships of each element in an XML document are designed in and

relayed by an XML schema. These XML schemas must be modeled to effectively

represent the content provided within the XML document. A well-constructed XML

schema should be intelligible and should illustrate its semantic content to casual readers.

It is important to recognize that the design of an XML schema greatly affects its

long-term usability. Poorly designed schemas are difficult to work with and will likely

not meet needs as they develop. Because XSL is used iteratively, a compact XML

document will prove most useful. Designing an appropriate schema is one of the most

important tasks in proper XML development. It is often difficult to decide to what level

of specificity the schema should describe its content. In general, DOM schemas should

be written with the most faithful description of its source data.

Consider the data evolution chain from source data to presentation of that data:

Source Data → Component → XML → Transformation → Presentation. Presentation

should, and will, change frequently whereas changes to the source data—assuming there

has been good data modeling before development—are far less common. Presentation

must adjust to changes in web browsers and the new means of communication that sprout

 15

as quickly as presentations are launched. The second reason for adhering to the content

of the source data is that it is much easier to ignore data when transforming an XML

document than it is to add data. XML documents that have a high degree of specificity

allow a transforming template to ignore unneeded information, while those that are vague

or do not contain necessary information force the transforming template to evaluate the

XML data and create any needed information. Highly descriptive XML should relay the

data it contains both in the order, and in the structure of its schema. A solid XML

schema is the foundation of a successful XML based implementation. The quality of a

schema is often reflected by the XSL document that consumes it. A poor schema will

likely require an unwieldy XSL.

XML Parser

Tying it all together

The parser is an essential component to any XML and XSL based application.

The XML parser, like many parsers, dissects the contents of a document into its various

parts. This software component sits between the application and the XML files, shielding

the developer from the intricacies of the XML syntax by reading and interpreting the

XML. It also checks for syntactical errors. Although it is possible to use XML without a

parser, most XML applications are based on some sort of XML parser.

 16

XML parsers come in two types: non-validating and validating. Non-validating

parsers do not check documents the document’s structure and content; they only check

that the document is properly marked-up according to XML syntactical constraints. In

addition to checking well-formedness, validating parsers verify that the document meets

specific requirements of structure and content as outlined by the related schema This

check is completed using a DTD or Schema that is either internal or external to the XML

file being parsed.

DTD

The purpose of a Document Type Definition (DTD) is to define the legal building

blocks and the legal structure of an XML document. DTDs can be declared inline in your

XML document so that the document can carry its own description, or as an external

reference. DTD was developed before XML and is not the ideal technology for validating

documents. Therefore, much of the development of document description and validation

standards focuses on XML Schema.

XML Schema

The word schema has two meanings in the general vocabulary of the XML

development community. There is the conceptual structure of each document as outlined

by a data modeler or architect. The preceding section, entitled XML Schema Basics,

outlines the fundamental decisions required for creating an effective standard content

 17

model for XML documents (i.e. a Schema). There is also the W3C recommended

methodology for validating a document, known as XML Schema.

XML Schema is an XML based alternative to DTD, providing a description of the

structure and the legal building blocks of XML documents. XML Schema provides a

means to define the elements, attributes, and child elements that can appear in a

document, the number of each that can appear, what type of data each element and

attribute can contain, and what their default values are. Microsoft originally proposed

XML Schema, but now that it is a W3C proposal, it is poised to replace DTD.

Its advantages are apparent:

• It is easier to learn than DTD
• It is extensible to future additions
• It produces richer and more useful schemas than DTD
• It is written in XML,
• It supports data types
• It supports namespaces

For the remainder of this document, the term schema, refers to the conceptual

schema as first mentioned. When it is necessary to describe the XML Schema as a

validating document, it will be described as the XML Schema formatted validation

document.

Document Object Model (DOM)

The XML Document Object Model (DOM) is a standard API (Application

Programmer Interface) for XML documents that provides access to a wide variety of

applications. With the XML DOM, a programmer can create an XML document,

 18

navigate its structure, and add, modify, or delete its elements. An XML parser can be

used to load an XML document into the memory of your computer. Once the document is

loaded, its information can be retrieved and manipulated by accessing the DOM. The

DOM represents the XML document in a tree view.

As its name suggests, the DOM is a representation of an XML document as an

object. Therefore XML documents can be manipulated by a set of properties and methods

accessible through the object’s interface. In essence, the DOM, is a standard API making

it possible to create the same solution accross programming languages and platforms.

While programmers may need to use different programming languages, they do not need

to change their programming model.

For this project, I have chosen to use version four of Microsoft’s XML parser. It

provides both DOM and SAX support.

Simple API for XML (SAX)

The Simple API for XML, or SAX, is an alternative API to the previously

discussed DOM. Unlike DOM, which creates a tree representation of the XML

documents, SAX does not have a default object model. A SAX parser is only required to

read in an XML document and execute events based on what it encounters. Instead of

parsing and populating the entire tree of relationships between XML data nodes, SAX

simply announces the relationship of one node to another. SAX parsing treats the XML

data as a stream, and unravels that data based on the relationship of a current element to

 19

its direct ancestor. For this reason, a SAX parsing requires less memory, but it also often

more complicated to code queries against.

While it is possible to recreate the entire set of relationships within an XML

document through SAX, it is much easier to get that information in the DOM. SAX

provides benefits in three distinct situations:

• When small pieces of data must be extracted sequentially from a large XML

document or DOM

• Where the DOM’s relatively large size is more costly than the act of

reconstructing an XML document from a SAX parse

• Where memory resources are so constrained that the DOM is unacceptably

large.

XHTML

Extensible hypertext markup language (XHTML), the W3C’s recommended

replacement of HTML, is similar to HTML 4.01. However, it is a simplified, version of

HTML that combines the syntactical rules of XML with the basic presentation elements

of HTML 4.01. The main goal of XHTML is to return to the original goals of HTML;

standardized presentation of content. As such, XHTML removes much HTML that had to

do with appearance and flair. Many of the attributes that defined color or effects are

deprecated in XHTML. The W3C recommends using Cascading Style Sheets or similar

 20

technologies with XHTML to promote a more distinct separation of presentation tier

information.

The reasons for this move are twofold. First, it is readily apparent that the HTML

standard had been muddled by web browser vendor’s creation and adoption of tags and

attributes not generally decided upon by a central body (W3C, XHTML). Simply,

HTML 4.01 is an amalgam of decisions made separately, and in some cases contradicting

an existing consistency in style and validity. Tags such as “blink” (<blink>) were

introduced by a specific vendor, and then inappropriately added to the standard, only to

be deprecated later. Unfortunately, the vendors aim to maintain backwards compatibility

with prior versions of their browsers. While the tag may officially be deprecated, it may

continue to be understood by future browsers to maintain backwards compatibility

between upgrades. Likewise, competing vendors want to make sure that their products

seem to have the same level of functionality that other market participants have. In turn,

the competitors begin to support tags that are not part of the standard. XHTML alleviates

these problems by:

1. Simplifying the standard. XHTML reduces the amount of high-resolution

presentation control, and substitutes it with simple structure that can be
consistently interpreted by a variety of browsers.

2. Putting the standard in XML format, so that it may be validated using the
dominant validation standard. If a developer uses an invalid tag, that document
will no longer be considered valid XHTML and should generally be rejected by
the rendering browser.

The second reason for the move to XHTML is more often the subject of debate.

The argument works as follows.

 21

Current browsers running on PCs are sophisticated and supported by enough

processing power to resolve most HTML even if it does not conform to HTML 4.01’s

required syntax. On the other hand, XML is a strict markup language that requires

everything be marked up correctly, resulting in "well-formed" documents. As new digital

devices proliferate, many will not have the resources to interpret a "bad" markup

language. XHTML pages can be read by all XML enabled devices and, while waiting for

the world to upgrade to XML supported browsers, XHTML forces developers to write

well-formed documents that will work in all browsers.

This has several added benefits:

• It continues the trend toward separating structural and semantic
markup from presentation-based information

• In doing so, it condenses documents and makes their presentation
more consistent between clients (because there is less room for
interpretation).

As HTML is slowly replaced by HTML, it will become a very important

technology.

Currently XHTML has not been widely adopted. For existing websites, it will

require heavier use of Cascading Style Sheets and a substantial review of existing

presentations. As companies begin to transition from classic ASP to .Net based web

forms there may be a proportional growth of XHTML content on the web. In these code

conversions, developers will be rewriting much of the presentation tier and it would be an

ideal time to transition to a new presentation standard.

 22

Ancillary Technologies

 XML and the supplemental family of technologies are new and—as a centerpiece

of Microsoft’s, IBM’s, Sun’s, and other’s web strategies—are the focus of intense

development. Therefore, there is a growing proliferation of proprietary and non-

proprietary XML related standards and technologies. This discussion serves to introduce

the most important of these standards. Please review the bibliography for more

comprehensive information and personal research.

 23

Relevance and Significance of Research

The Solution Described:

This project endeavors to simplify the use of XSL related technologies by

providing a simple, easy to use application that allows developers to author documents in

the XSL and XPath languages. The XSL they develop using the tool can then output

content as HTML, XHTML, or any language the user requires.

The application will serve several types of people in the development community:

1. Developers who understand a specific markup language but are not versed in the

specifics of XSL development.

2. Developers or managers that are interested in developing prototypes before hiring
a full time staff member to develop XSL.

3. Small development shops, that wish to exploit the benefits of XSL development

without the staffing expense of hiring an XSL developer, or training developers to
learn more XSL than they expect to use.

4. Developers using low memory devices or with special requirements not met by

the more widely used XML and XSL IDEs.

It will do so by providing a simple, familiar interface. This interface will be

guided by metaphors common to the most popular types of applications (e.g. word

processors and HTML editors). It will offer easy, fast development of functional XSL.

 24

Comparison of Related Products

Xmlspy®

Altova’s Xmlspy® is a quality product that has the majority of Windows

development market share. It is a comprehensive IDE for the development of all XML

related technologies. The product aids in the development of DTD’s, XML, XSL, XDR,

XML Schema and nearly every other XML related technology that is described by the

W3C’s recommendations.

Xmlspy® offers users:

• XML editing and validation
• Visual schema and DTD editing
• XSL editing and debugging
• Database connectivity and database content modeling tools

(Figure 3 – Screen Shot of XMLSpy® IDE)

 25

More Software than the Average Developer will Use

This wide range of support comes with several drawbacks. Providing this much

support give the program far more functionality than the average user will use.

Developers who are new to XSL development, and may be struggling with simple

concepts like well-formedness, are highly unlikely to edit SOAP and WSDL. Likewise,

developers who need help with XPATH are less likely to need SOAP editing. Since

SOAP and WSDL are primarily used in advanced XML processes, such as web services,

this is level of support exceeds the basic user’s needs. SOAP and WSDL development

code is also generated as part of the .net development IDE, making the need to edit such

source code rare. Full-time XML and XSL developers may find themselves using many

of the product’s features, but many developers divide their time between XML and other

technologies. For this reason provides far more functionality than the average user is

likely to employ. This additional functionality comes at the cost of system resources, and

if not used, represents a clear inefficiency.

High Level of Complexity

Supporting this wide range of features also comes at the expense of simplicity. A

standard session of editing with XML spy may require oscillating between five window

views. The tool provides source code views, data grid views, hierarchical views, and

views specific to the language with the user is working. In sum, the user always has more

than one way of viewing XML and XSL data, but not clear reason for using one view

over the other. In some cases, certain command cannot be executed until a user switches

from a view. These are artificial rules, in that they are imposed by the IDE, and only add

 26

to the user’s difficulty in trying to complete their task. This unneeded complexity may be

intimidating to inexperienced users.

Insufficient Xpath Builder

XML spy also offers a tool called the XPath analyzer. The tool is designed to aid

in the debugging of XPath queries. Since there is no tool to help in creating queries,

Xmlspy® has limited use to new developers. The tool could better serve new users by

providing a fast, easy way to build XPath queries.

Xmlspy® is Not User Extensible

 Xmlspy® literature touts its third party plug-in architecture. This allows other

software developers to create software that can extend the functions of Xmlspy.

Unfortunately, developers must understand how to create such plug-ins. Users who wish

to use these plug-ins must find them and must trust the source to ensure that this new

software will not compromise their system’s security. Many applications provide a user

extensible architecture that allows users to add functionality to the tool without

developing software. For new users, user extensibility may be more useful than third

party plug-ins. Especially if no third party software providers exploit this ability.

Product Price

Despite these short fallings, Xmlspy® is a costly solution. While Xmlspy sold for

little over $200 in 2001, the latest Xmlspy® version costs more than $350. Enterprise

editions of the software cost slightly more than $1000. Despite Altova’s claim that “At

 27

$399 for a single-user license, (Xmlspy® 5 Professional Edition) Xmlspy® 5 will

generate substantial cost savings over competing products,” (Altova) the product may

still be considered expensive by most buyers.

For many companies, and individual developers, this is far too much to pay for

software that will be used infrequently or to complete simple tasks.

 28

StyleVision™

Altova also markets a product called StyleVision™. Its aim as described by

Altova, is to allow, “ Web designers with little prior knowledge of XML to easily create

advanced XML websites” (Altova). This product offers the following main features:

• Visual design of XSL stylesheets
• Schema driven stylesheet design
• Separation of data and markup
• Integration with Altova’s suite of XML related tools
• Customized forms and layout

Stylevision™ is one of the few products of its kind available. It’s clear goal to

simplify the development of XML and XSL by inexperienced users, is well approached,

if not achieved.

Stylevision™ is A Data Query Tool Not an HTML editor

The product lacks the flexibility and familiar visual interface elements that most

web designers are used to. The editor does not have an effective source editing tool and

(Figure 4 – Screen Shot of StyleVision™ IDE)

 29

lacks other core elements that web designers would expect. Its general look and feel is

more like a data query tool than a traditional HTML editor is. Quality HTML editors help

users design aesthetically pleasing pages through tools and WYSWIG editing.

Stylevision™ offers only a few tools, and focuses on the development of XSL code.

Little attention is paid to HTML editing.

Stylevision™ Lacks User Extensibility

Like other Altova products there is little attention paid to user extensibility.

However, unlike Xmlspy, Stylevison™ does not even support third party plug-ins. End

users who wish to simply add to the library of markup tags, for example, cannot do so.

Users must buy upgrades or other new software to add the simplest functionality to their

existing program.

Stylevision’s™ XPath Analyzer is Insufficient for New Users

Stylevision™ uses the same XPath Analyzer provided with Xmlspy. This tool, as

discussed, does not help build XPath as much as it helps debug existing XPath queries.

Stylevision’s™ Price

Stylevision™ is also an expensive product. Its base price of $299 for a single user

license makes it impractical for small development shops and home users.

 30

Sonic Stylus Studio

Sonic Stylus Studio has been available nearly as long as Xmlspy®. It is used by

nearly 30,000 developers worldwide (Sonic). The product was originally sold by the

Excelon Company, which was acquired by Sonic two years into Stylus Studio’s history

(SD Times). The product is stable, but lacks the breadth of functionality that Xmlspy®

and Stylevision™ offer. Stylus Studio’s main features are:

��XSLT editor and debugger
��XML schema designer
��XML document editor
��XQuery editor
��Reverse engineer XSL from HTML
��Project and source control

Stylus Studio is marketed as a WYSIWYG XML-to-HTML editor. The

application has seen a few refinements in its history but it relies very heavily on

familiarity with XML and XSL. New developers might find it conceptually difficult to

navigate. A single user license for stylus studio is $395.00.

(Figure 5 – Screen Shot of Stylus Studio IDE)

 31

Stylus Studio Lacks HTML Designer

The design of Stylus Studio reflects a bias toward data driven presentations. Like

StyleVision™, Stylus Studio does not offer much for aesthetic designers who want the

ability to make many visual changes. Instead, stylus studio is very good at helping a user

extract XML data using XSL. This is only half of what the developer may want.

Supports XQuery, Instead of XPath

 Interestingly, Sonic Software decided to support the W3C’s XQuery instead of

XPath. According to the W3C, XQuery is very similar to XPath. XQuery is an adaptation

of XPath that affords developers a little more flexibility. The W3C recommendation was

last edited on May 2003, making it a more current topic than XPath. Nevertheless, since

XQuery is so new, some recent version of XML parsers do not support it. The Microsoft

XML parser for example, does not support XQuery.

 32

Open Source Development Initiatives

 There are several open source initiatives for products that aid in the development

of XSL. These include:

Treebeard:

Treebeard is an editor that supports XSL transformations. It is written in Java and may be

used on Mac OS 10 and Windows. According to sourceforget.net, Treebeard is “a text

editor that allows the loading and editing of an XML document and an XSLT . . .it also

can apply the XSLT to the XML and display the output for further editing/saving.” Work

on Treebeard began in July 2002 (Source Forge).

Xsldbg:

Xsldbg is a debugging tool for XSL. It is described as “a debugger for xsl/xslt stylesheets

which has functionality similar to a Unix/Linux 'gdb'" (Source forge). The application is

limited to XSL debugging and does not offer visual tools for authoring XSL. Work on

xsldbg began before September 2001,

One of the main problems with these open source solutions is that they are not geared to

new developers. Upon reviewing the log of development history, it is clear that these two

products are factioned development initiatives with sometimes unclear final objectives.

The development goals seem to change. These two projects do not represent complete

solutions. Treebeard lacks debugging, while xsldbg lacks an editor.

 33

With both of these products, there is also the clear vulnerability that development may

completely stop on any one of these projects before bugs are resolved or the project is

complete.

 34

Product Benefits:

This project endeavors to create an application that gathers the benefits of existing

applications and extends those benefits by simplifying the user interface, increasing

flexibility, extensibility, and by creating a product that is lightweight.

From a user perspective, the main reasons to use this new XSL editor over

industry incumbents are:

1. The product is simple to use.
2. The product allows rapid development without a lot of set up or preemptive

decision-making.
3. It consistently creates well-formed HTML, or other markup standards
4. The product is easily modified and updated to support other markup languages.
5. The product is a better value than industry incumbents are.
6. The product is lightweight

Simplicity of Use

The tool is simple to use because it provides an uncluttered user interface and

common metaphors. The visual interface is basic, and a majority of the necessary

decisions are made for the user as default settings.

In reviewing personal experience and software reviews, it is evident that complicated

interfaces encourage confusion. While a plain graphical user interface may not be in

fashion, it is often the hallmark of good usability. In following, this editor uses only the

most basic elements. It does not use the 3-dimensional effects, gradient fills, and

asymmetrical buttons that plague the latest applications.

 35

Simplicity is also encouraged by limiting the number of choices the user must

make. While such limitations would normally detract from an applications ability to

meet more advanced usage, it should not for this application. Since this application is an

editor, advance scripting decisions can be entered directly into the text editing window,

allowing more advanced user to add their touches unobstructed.

Rapid, Simple Development through Abstraction of XSL and XPath Details

The users of this application will have to understand little about XSL. The

program allows users to simply click and drag content into the document they are

creating. Users familiar with these technologies can then tweak the resulting source code,

as they desire.

Creating Xpath queries, for example, requires little knowledge of the Xpath

language. Instead, the details of creating the queries are extracted into simple click and

drag behaviors. Likewise, details about the individual markup language are extracted into

toolbar icons. Knowledgeable developers can tweak the code created by the editor, or

editing the document directly. If a user forgets a tag name, or its available attributes, the

user can use the program’s tag library as guidance. The complete application then

demonstrates the strength of traditional HTML tools, blended with the XSL support of

XML IDEs.

Consistent Development of Well-formed HTML

The editor’s default mode is to produce well-formed HTML. It provides a real

time indicator that identifies when a subject document is not well-formed or contains

 36

syntactical errors. This exceeds the capabilities of traditional HTML authoring tools,

which tend not to produce well-formed HTML. In contrast, XML IDEs tends to provide

real time well-formedness checks, but do not help in authoring HTML.

The Product is Easily Modified and Updated

This product will prove to be both extensible and flexible because of design

decisions discussed in the following sections. Users of this product should find that

adding a new library of markup tags is simple. They should also find it easy to customize

the product to meet their specific needs. Both points are extremely important in

promoting the long-term use of this application. While it would be simpler to produce an

application with very specific support constraints, the application would prove far less

durable in the tumult of industry changes.

Product Value

Since value is determined by price and quality, it is important that the application

be developed against standard, proven methodologies and foundations. The software

from which this application was developed has a stable heritage of revision and proven

historical use. It may have been more enticing to treasure hunt for exotic software that

offered greater functionality, but the cost of such software would be high. In researching,

I discovered software components that exhibited erratic behavior, offered little technical

support, but provided innovative functionality. Since the target user of this application is

a novice user without the time to debug software, it made little sense to take the risks

 37

involved in incorporating such software into the application.

This XSL editor is created from a royalty free XML parser and controls. The

software foundations are standard components that are used by multiple applications

within the Windows operating systems. This allows the editor to be redistributed at lower

cost than the industry incumbents. Much of the software used already exists on client

machines. Much of the software has been stable and tested for years. For the end user

this means reliability and a cheaper final cost.

Product is Lightweight

The product is lightweight, requiring few memory and processor resources. This

makes the application a good choice for specialized development environments, low cost

client machines, or other situations in which machine resources are scarce or need to be

carefully utilized. If for example, a developer wishes to develop an XSL stylesheet from

a handheld device, this application would suit there needs better than larger applications

like Xmlspy. Products such as Opera Software’s Opera web client and Irfanview’s

picture viewer have remained in use simply because the application takes less time to

load and fewer resources to run. These lightweight applications offer paired down

functionality, but meet the needs of enough users to warrant continued development.

Irfanview, for example, has been used for nearly 10 years outlasting a variety of more

complicated viewers.

 38

Research Findings and Design

Software Design

The core design goals for this application are two of the most important goals in

any software design plan:

• Extensibility
• Flexibility

Because many XML related standards are not mature, it is important that this

application was designed with extensibility and flexibility in mind. As XSL grows, this

application can grow. As the standards change, this application can change. This is also

true of the markup language support.

The goals of extensibility and flexibility are encouraged by using the following

technologies:

• An XML data source
• Microsoft’s Component Object Model

XML Data Source

One of the most striking attributes of the design of this application is that it is

reflexive. It uses XML to enhance its extensibility. The library of available tags for the

authoring languages are stored in an XML file. This provides the benefit of easy

maintenance and relatively low overhead. There are clear benefits to using XML instead

of a database or file resource.

 39

A database resource would require the installation of database software if it did

not already exist on the client machine to which the application is installed. Since

databases are whole sets of software in themselves, a database adds another level of

complexity and increases the potential points of failure. As a data resource, only the

retrieve functions of the database would be used. It is unlikely in a design like this that

there would be much use for inserts, updates, and deletes. That means that only a small

portion of the database software will be used for this application. For these reasons a

database resource would be a poor choice.

A file resource, or flat file, is also not a reasonable option. The primary weakness

of any flat file is its inferiority to databases in describing relationships. It is possible, but

cumbersome, to describe data in detail through a flat file. Unfortunately, data quality

must be managed by the application that uses the flat file. Databases, at least provide

mechanism to ensure the quality of transactions. Connoly and Begg’s description of the

limitations of file based systems also highlight a wider range of concerns:

 40

XML brings the strength of both approaches together. XML can easily describe

relationships. It has inherent quality checks (e.g. well-formedness constraint). It can be

interpreted quickly with little overhead and far less software than a database.

Microsoft Component Object Model Based Design

The Microsoft Component Object Model, or COM, is a proprietary object model.

Kirtland describes COM as “ a language-independent, system-level object model that

provides a standard way for components and applications to interoperate” (Kirtland, 10).

Microsoft leverages it’s Active X technology to create class based applications that are

usable by most modern programming languages. These components are stored in

dynamic link libraries (or DLLs) in the file system of the operating system in which they

will be used. The application programming interface (API) to each of these objects is

then exposed through a programming IDE (e.g. Visual Basic or C++) and accessible as

properties, methods, and events of the component (Kirtland).

The component object model is an especially important technology for client

server and 3-tiered architectures. Although this application is neither, the flexibility to

which these architectures aspire matches the aspirations of this application’s design. The

component based architecture helps to provide a reasonable level of flexibility and

potential for enhancement.

The COM objects allow for the abstraction of very low-level details. For example,

the details of parsing an XML document are taken care of by the XML parser component.

 41

If there are changes in the parser code, the old component need only be replaced with the

new one. When the application is recompiled, the new component will be used. This

simplifies the often-cumbersome process of version management and allows the

developer to focus on building a solution quickly, from a set of atomic parts.

The program design requires several components created by Microsoft. These include

• The MSXML parser (msxml.dll):

The XML parser from which all parsing is executed.
• The Scripting File Systems Object (scrrun.dll):

The object that provides access to the windows file system for
file access as well as the fundamental utilities of the windows
scripting environment.

• The Microsoft HTML object library(mshtml.dll):
The object that provides some of the support for HTML authoring
and editing.

 42

The Implementation

The application was written in Visual Basic because the language’s simplicity

allows for rapid prototype development. Writing in Visual Basic also allows the easy

transitions to other derivative languages such as Embedded Visual Basic for Windows

CE, or advanced languages like Visual Basic .Net.

The application’s core capabilities are to:

• Parse, error check, and render XML and XSL documents.
• Create well-formed HTML, XHTML, or other markup.
• Integrate CSS, JavaScript and other client technologies into an

extensible style sheet easily.
• Preview markup and design in a WYSIWYG environment.
• Use an XML schema for building XPath.

Since the world of markup languages is still immature, the application is designed

to allow for design and development of XSL stylesheets producing various markup

languages. This level of extensibility is achieved by the XML based resource.

Upon startup, the application reads an XML file and adds valid tags, as described

by the XML, to its list of available markup. If the application needs to support a new

markup standard, the user need only add the required XML document to the application’s

library of markup resources.

 43

The schema of these XML documents is based on the W3C’s schema for

describing markup languages. The resource file for the list of valid XSL files, for

example, is an exact copy of the XML document provided for download from the W3C’s

website. As the standard changes, a user need only download the XML file and replace

their existing copy with the new one. This process can also be automated in revisions of

the application.

A sample XML fragment for the for-each XSL tag is listed below. This sample

represents one fragment in the entire XML file resource for XSL tags:

<e:element-syntax name="for-each">
 <e:in-category name="instruction"/>
 <!—Attribute for for-each element -->

<e:attribute name="select" required="yes">
 <e:data-type name="node-set-expression"/>
 </e:attribute>
 <e:sequence>
 <e:element repeat="zero-or-more" name="sort"/>
 <e:model name="template"/>
 </e:sequence>
</e:element-syntax>

The XML document resources combine the simplicity of use common to text files

with the clarity and reliability of data common to database resources. The application

parses these resources using SAX based parsing because the XML file resource can be

large and only a subset of their content is required for use.

(Figure 6 – Sample XSL Fragment from XSL Tag Library)

 44

Once all of the XML document resources have been loaded, the user is presented

with the graphical user interface of the editor.

 45

Product Description:

Graphical User Interface Design

The user interface design is derived from a study of the most common

applications in the Windows operating systems. It reflects some assertion of fundamental

design theory. The greatest spatial weight, for example, is given to the subject of most

action, the document pane. Likewise, tools are centrally located and clearly indicated.

The prototype’s graphical user interface is analogous to an artist’s first sketches.

The choices in the interface are made to be suggestive, not final. They are not in final ink

form, but help to provide a sense of what may be. The GUI elements are more functional

than an expression of aesthetic form. In order to demonstrate the potential of an

application, user interface elements must be added. In most cases, these elements do not

benefit the aesthetical qualities of the project as much as they aid the usability of that

(Figure 7 – Screen Shot of the XSL Editor)

 46

product. As mentioned in later sections, developing this project beyond the prototype

stage would require more comprehensive application of user interface design and graphic

design.

The following section outlines these decisions.

The User Interface

The application is based on a center pane user interface model familiar to users of

Microsoft Word, Microsoft Front Page, and Macromedia Dreamweaver. There is a

center pane in which a subject document is loaded, a right hand-side resources panel, a

top mounted toolbar and menu section, and a bottom mounted status panel. All

documents are edited from the center pane.

The center pane area represents the main tasks of the application. The right panel

offers ancillary resources for development. The upper task bar is the center of action, and

the lower status bar provides ongoing information. Each of the elements in a particular

pane were placed there to contribute to this general theme. This arrangement is common

to users of Macromedia’s Deramweaver, Microsoft’s Front Page, Microsoft’s Interdev,

and to a more limited extent, Microsoft Office products.

 47

Center Pane

From within the center pane, the editor provides three core views to its users.

1. Editor

The editor view allows text editing of the subject XSL document. It is
also the view in which XPath queries are inserted into the XSL document.
The editor was created using the Microsoft Rich Text control as the text
editing area.

2. Visual Editor
The visual editor provides a basic WYSIWIG editor for the XSL subject
document. The visual editor was created using the Microsoft Browser
Control and dynamic HTML. The browser control offers an API to the
basic functions of Microsoft’s Internet Explorer. To enable visual editing
of an HTML document, the elements of the document are manipulated
through JavaScript and convenience functions offered through Microsoft’
scripting engine.

3. Browser View
The browser view provides a preview of the document. It executes the
XSL against the provided XML document and renders the result in an
HTML browser. The browser view is also based on the Microsoft Browser
control. It simply uses the control to display a document after the XSL
transformation has been executed.

The editor view is the default view.

Right Panel

The right panel is best described as the resource pane. It

contains the group of controls that offer editing resources. These

resources consist of the XML resource, the Markup Resource, and the

XSL tag resource. Since these resources are the main reason for

developing the software the right panels is prominent and always

(Figure 8 – Screen
Shot of XSL Editor
Right Panel)

 48

visible.

The XML Schema Resource:

Figure 9 is a tree view of the sample XML document that the user selected. This

tool helps in authoring XPath queries by demonstrating the relationship between

elements. Users may double-click an element from this view into their document to add

the respective XPath. The resource is always visible, making access to the XML and

XPath queries simple and straightforward. Since this is one of the main reasons for

developing the software, it only makes sense that the tool is readily available.

The Markup Resource:

The markup resource (figure 10) is a simple list of all available tags for the loaded

markup language. Users can click and drag from this list to add a new tag to their XSL

document. The list is created dynamically every time the program is run. If a user wants

(Figure 10 - Markup Resource Screen Shot of XSL Editor)

(Figure 9 - XML Schema Resource Screen Shot of XSL Editor)

 49

to add to this list, they need only edit the XML document by adding the new tag

anywhere in the library resource document.

The XSL resource

The XSL resource (figure 11) is a simple list of all available XSL tags. Users may

double-click items on this list to add a new tag to their XSL document while in edit

mode. This list is built dynamically.

Menu and Toolbar

The menu and toolbar are straightforward. The menu provides access to the

standard file functions; Create, New, Open, Save, Save As. It also provides the means for

switching between views, text editing, and exiting the program.

The toolbar provides the basic HTML editing functions and a second interface for

the text editing functions; Cut, Copy, Paste.

(Figure 11 - XSL Resource Screen Shot of XSL Editor Panel)

 50

Status Panel

The most important element of the status panel is the XML well-formedness

check. As a user is editing their document, the status panel will indicate whether the

document is well-formed. If the document is not well-formed it will display a short

description of the problem. For more details on the problem, the user can double click on

the description in the status panel.

(Figure 12 - XML Editor Status panel

 51

Building the Graphic Design Elements

The application’s visual design was drafted in pencil and paper first. I reviewed a

number of programs that had received accolades for their general usability, and then built

upon their general layout. I also used programs that were successful at providing their

users with a comfortable environment in which to develop. I tried to review a mix of

programs involved in editing and design. The general hypothesis was that a design

programs aid in aesthetic decisions making, while source code editing programs aid in the

general task of creating and revising code. These programs include:

��Adobe Photoshop
��Macromedia Dreamweaver
��Microsoft FrontPage
��Microsoft Word
��Microsoft Notepad
��Microsoft Visual Basic
��Microsoft Wordpad
��Macromedia Freehand.

Once I had decided on a general layout for the user interface development tools, I

used digital media tools to create specific graphical elements. The splash screen graphic

and program icon were created using the Persistence of Vision Ray (PoV-Ray) Tracer. It

was hoped that ray trace graphics would provide the updated look that invites users to

feel confident and comfortable with the software they are using. PoV-Ray also offered

��A comfortable, programming oriented authoring environment e
��Free, high end graphics tools

I also used Microsoft Paint to author the icons created for the design view toolbar.

I used Paint because it is easy to use and costs nothing for owners of the Windows

 52

operating systems. The graphics are recognizable crude, but for a prototype, sufficiently

communicate their meaning.

 The two icons on the project selector page were copied from the Windows

XP icon library. The windows XP icon-editing standard, as published by Microsoft,

indicates that icons should be designed in high resolution and with three-dimensional

perspective. Since these images are designed against that standard, they also add to the

look and feel of the software. The icons communicate graphically, the action of creating a

new file and opening a new file respectively.

 53

Using the Program

Using the editor is very straightforward. Users may create a new document, open

an existing document and save documents using standard menu items and shortcut keys.

The Microsoft File System Object and the Common Dialogue control are the foundation

for these file operations. The Microsoft File System Object facilitates the foundation for

writing to, reading from, and creating text files. The Common Dialogue control provides

the graphical interface common to file selection for file open, save, and save as functions

in the windows environment

File Open

Files may be opened from any local or network drive to which access is allowed

in the Windows operating system. Since the program is built against the Common

Dialogue control users should experience no difference between other applications in

their ability to open files.

When files are opened, they are immediately split into two sections. The first

section is the XML and XSL header. This section contains the XML declaration and the

XSL namespace declaration and related content. The second section is the body of the

XSL. This section contains the main content of the subject document including all

elements child to the XSL document definition element. When a user edits a document,

they are only editing the body of the XSL document.

 54

There are two primary benefits to splitting the XSL file. First, it allows the

document to be edited and validated as a freestanding document in XML format. Because

Microsoft’s Internet Explorer is an XML enabled browser, it will automatically treat any

document with the XML declaration as an XML document. This means that when a

document is previewed it is previewed as XML, not as the markup language with which it

is written. By removing the XML and XSL document identifiers, this problem is avoided.

Secondly, by removing these two header sections from the editable region in an

XSL document the user is protected from the small syntactical errors that disrupt the

validity of their XSL document. If for example, a single letter in the XSL namespace

declaration contains the incorrect case, the document will not be recognized as a usable

XSL by some parsers. For beginners this can be a very frustrating fact.

Once a document is opened successfully, it is parsed. If there are errors in the

document, those errors are described in the error pane.

File Save

File save and save as are simple text file write functions. They concatenate the

XSL header and the XSL body back together and save the user’s work in a single text

file. By default, all files are saved with the .xsl extension. Users can change the file

 55

extension, as they would be able to do from any Windows program. They can also save

over an existing document, or navigate to a mapped network drive or virtual directory.

File New

File new uses the file open functions to open a selected template file. The

template file contains a valid XSL header and basic body content. Users may create their

own templates by creating a standard XSL file, or by copying them from other resources.

The main goal in using template files is to allow users the ability to extend and customize

the program. More experienced users can create customer templates and provide those

template to others. If for example, each XSL document should have a similar look and

feel, then a user can create a template and use that template for subsequent development.

The notion of templates should be familiar to users of Microsoft Word and Macromedia

Dreamweaver.

Validation and Well-formedness

All content in the subject document pane is subject to parsing at every edit. As the

user types new content, for example, the content of the edit pane is loaded into a

Document Object Model. If there are any errors thrown by the parser’s error object, the

description of that error is abbreviated and expressed in the error panel. When a user

wants more specific information about the particular error they can double click on the

 56

error pane. The error will then be fully described and the location of the error will be

highlighted in the edit view pane.

Creating XPath

To create XPath queries the user should load a sample XML document into the

XML schema pane. To insert XPath into their XSL document, the user then needs to

double- click on the element they wish to query using XPath. The analogous XPath will

then be pasted into the edit view panel of the XSL document with which they are

working.

More detailed instructions on using the editor follow in the sections entitled Using

the Editor: Basic Walkthrough and Test Case Scenarios.

 57

Using the Editor: Basic Walkthrough

The editor is designed to be used like common document editing programs. The

user typically begins by creating a new document. The easiest way to create a new

document is to select the create new file button from the new project modal window.

Users may also create a new document by selecting new from the file window.

After selecting the new file button the user document window will contain a basic

HTML file from which to start authoring. This document has only the HTML declaration

tag and the HTML body tags, along with a comment specifying where new HTML

should be placed. At this point, the user can add any code they wish to the document. If

the code does not conform to the XML standard, the status bar in the lower left hand side

of the application will describe the error. If the user is still uncertain of the error, double

clicking the error status panel will highlight the approximate location of the error being

described.

If the user needs to add code to the document, they may do so by directly typing

the code into the document-editing window or by double clicking any of the tags in the

tag resource windows of the resource pane.

If the user intends on using XPath then they should click the get XML button in

the right hand portion of the user interface. This allows the user to select an XML

document from which XPath queries will be determined.

 58

To use the XPath builder users need only select an item from the hierarchical

view of the XML document. A single mouse click adds the XSL value-of tag with the

correct XPath query to the cursor position of the document window.

The user may also edit their document by using the design view windows. To

enter the design view, the user must select design view from the view menu. The design

view provides visual editing capabilities instead of text editing capabilities. In design

view users can click and drag to edit the appearance of the document. The design view

does not allow XPath editing.

Once a user is content with the changes to their document, they can view the

results through the browser view. To do so the user must select browser view from view

menu.

In the course of editing, a user can save their work by choosing file save or file

save as from the file menu. To close the application the user must select exit from the file

menu or click the Windows close icon in the upper right hand corner of the application

window.

 59

 Research Findings and Limitations

Test Case Scenarios and Description

Case 1: Create a New XSL File

The user should start by running the application. The new file dialog should

appear in the center of the user screen. Begin by choosing a template for XSL

construction. The list in the upper left hand of the new file dialog window represents the

available template files. Choose one by clicking on it. This will update the file name text

box immediately below the template list box. When the user is content with the new file

name, click the create new file button in the lower-right of the new file dialog window.

The file is now ready to be edited. There should be a very simple document in the

document window. Begin by typing the word “test” to the immediate right of the text

that reads “<!—put your HTML here—>.“ Note that there should be no XSL errors in

the status panel. Now being to make the word test bold, by typing the HTML start tag

“” directly before the word test. The status panel should read, “end tag ‘body’ does

not match the start tag ‘B’” This message indicates that the document is not well-formed

because it lacks the required closing “B” tag. Double-click the status bar panel to

indicate where the problem exists and learn more information about the problem.

To correct the problem type “” immediately after the word "test." Now use

the WYSWIG editor. Select design view from the design menu. Select the word “test”

 60

and click the underline button (marked by a U) on the toolbar. The editor has now added

the underline tag to the document. To view your changes switch back to editor view by

selecting edit view from the view menu.

While in view menu, add an XPath query. Click the get XML button on the upper

right-hand side of the editor. Select the file named, sample.xml. Place the mouse cursor

directly after the word test in the subject document window and click-once. This will

place the cursor, so that the XPath query is inserted directly after the word “test.” Now

select the first node in the XML tree view window. An XSL value of statement and an

XPath query should now be placed beside the text document.

Save the document by clicking save from the file menu.

Case 2: Using the Editor to Edit an Existing Document

The user should start by running the application and selecting open existing file

from the new file dialog box. A file open dialog box should appear. Navigate to the file

to be opened, and select it by either double-clicking the file name or by selecting the open

button on the lower right hand side.

If the file is well-formed, the document will be loaded into the editor. Once the

file has completed loading, the user should select Design view from the View menu.

The document should now display as rendered HTML. From the design view the user

 61

should use the bold button to emphasize a section of text. To do so, select the desired text

with the mouse and click the bold button in the formatting tools toolbar. To view the

effect of the change, select edit view from the view menu.

Now attempt to insert an XPath query. From within the edit view, click the get

XML button on the right hand side of the editor. Select a sample XML document from

the file open dialog. Return to the subject document window, and place the text cursor

where the user would like an XPath query to be inserted. Using the XML schema

window, select an XML node to insert. An XSL value of node will be inserted with the

corresponding XPath query.

Save the file by clicking save from the file menu.

 62

 Limitations in Scope

Design and Development

The functional application serves only as a prototype for a more complete

solution. Many of the functions and features of the application have been implemented in

an exploratory way. The implementation, and all related code, purposes to demonstrate

the potential of the described design. The source code for the application does not

represent a finished application, as much as it means to prove the possibility of specific

features and functionality.

It is clear that an application of this nature would require the benefit of a full team

of design and developers to truly compete with applications that have been built by such

teams. Respectively, the scope of this project is limited to the efforts and abilities to

which I am capable in several months of research and development.

Recognizing that the application is neither required to be, nor capable of being developed

to a final product within a reasonable amount of time, the project has easily recognizable

limitations.

These limitations include, but are not limited to:

Development for a Windows Operating System

Because a vast majority of the computer systems used for business and personal

use are Windows based machines, it made sense to develop the application in Windows.

 63

Alternative operating systems, such as Linux and the Macintosh’s OS X, would have

hindered this enterprise. According to several sources the Linux, operating system offers

few quality IDE’s for developing programs of this nature. Macintosh’s OS X would have

forced the application to be used by a limited group of individuals simply because the

operating systems has lower market penetration than Windows.

Lack of Comprehensive Visual Theme and Graphic Design

In the interest of time, little energy was spent on the aesthetic elements of the

application. A few icons were gathered from royalty-free resources. I did pay attention to

the essentials of graphical user interface design, but successive revisions of the

application would benefit from a trained professional’s artistic hand.

Lack of Multi-document Editing within a Single Instance of the Application

A multi-document editing interface is one that allows multiple subject documents

to be edited from within the same application. Supporting multi-document editing within

the editor would have added to the programmatic and user-experienced complexity of the

applications. Documents such as Windows Notepad or Windows Paint are simplified by

the ability to edit only a single document at a time. For novice users the decision to not

support multi-document editing interfaces means ease of use. As such, this application

does not have a multi-document editing interface.

 64

Limited Markup Support

To expedite coding the program has only an HTML resource from which to

gather markup tags. Creating a XHTML, WML or other markup resources would not

contribute to the proof that this application’s hypotheses are reasonable. The single

HTML resource proves the flexibility of the XML based resource as well as five more

resources would.

Development in Traditional Visual Basic Instead of .Net Technologies

The application was developed using traditional Visual Basic. It is immediately

apparent that an improved application would be developed in .Net technologies. At the

start of this project, .Net development tools were neither inexpensive, nor well

distributed. Developing in Visual Basic . Net, for example, would have meant a hefty

investment in the .Net framework IDE, and use of a limited number of development

resources.

Likewise, development of the application in ASP.net would have meant sparse

development resources and a change in the general approach to the problem. Simply, a

web based version of this application would be widely divergent from the XML editing

incumbents, and awkward to use. This project was designed to run on a client machine

because the overhead of parsing and editing a document across a network would be slow

and cumbersome. This is particularly true of .Net’s reliance on post back for control

validation and form submittal.

 65

As networking technology improves this may become more reasonable. In that

time, the amount of literature on developing in .Net technologies may have grown. By

then it may be reasonable to reassess the redesign of this application using a .net

paradigm in the .net framework.

.Net controls and other developer resources were also limited at the start of this

project. Microsoft provides a wizard for the conversion of legacy Visual Basic code to

.Net Visual Basic code. When the time is right, a source code conversion, if not a

redesign, can be quickly executed.

A more committed effort would involve the transition of this software to the web

services model. The bulk of the processing code in this application sits in Visual Basic

modules and classes. As such, converting to web enabled, or web service product would

be reasonable and straightforward. The primary hurdle is in a redesign of the user

interface.

Client Implementation

For several of the network limitations listed above, this project is strictly designed

as a client based application. Its lightweight and simplicity should allow it to be easily

converted to embedded Visual Basic for Windows CE, or other systems in which

lightweight editing supercedes the need for comprehensive functionality.

 66

Hard Coded Paths and Other Portability Concerns

To simplify production and standardize installation, this program has a small list

of hard coded file paths. In total, the three paths represent the following:

• The file path to the file resource for XSL tags
• The file path to the file resource for Markup tags
• The file path to the available document templates

These hard-coded file paths encourage a standard installation accross machines,

making it easy to find, replace, and update file resources. When the application is

developed beyond the prototype, these paths can be stored in XML resources or the

Windows Registry.

Lack of Help Files, Tutorials, and Other User–centered Support Documentation

Since the editor is merely a prototype, there is no user supporting documentation.

When the program is ready for general distribution supporting documentation would be

required. The aim of this project was to demonstrate potential, and as such, the existence

of standard documentation does not add to the claims of this endeavor. The application

use sections of this document represent the only user-centered documentation.

Developed Against a Microsoft Version of the Parser

As discussed, the source code for this project was developed against the Microsoft

XML parser. There are clearly alternative parsers in the software marketplace. The low

cost, fidelity to W3C standards, and the library of documentation made the Microsoft

parser a quality choice. Future development may benefit from choosing a more

 67

lightweight XML parser or by choosing one that is not specifically designed by the

makers of the Windows operating system. For prototyping purposes, the XML parser

makes sense.

Development Using Freeware and Existing Components

Many of the controls and components used to develop this editor are provided as

part of the Windows operating system. Other components were freeware. This kept cost

of production down, and provides the editor one of its core benefits; low cost. If this were

not a prototype, it may make sense to investigate more complete software solutions.

Lack of Direct XSL Transformation

The editor prototype does not support direct transformation of an XML document

by the subject XSL template. The reasons for this are technical, not conceptual. The

program uses temporary files instead of direct memory addressing. To support direct

XSL transformations there would need to be a way to load both the XML file and XSL

file into memory, execute the transformation, and load the result into an additional

temporary text file so that the Microsoft web client control could display the document.

Such processing is possible but it would require the user to specify an XML document for

transformation even when the user is not executing Path queries. Since the browser, view

should support both XML dependent and XML independent browser previews I create

the simpler of the two. The browser view currently only supports XML independent

previews. This means a user can view their changes, but they cannot view their changes,

as they would be applied to an XML file. Supporting this behavior would require either

 68

an additional control (one for XML dependent previews and one for XML independent

previews) or some switch for toggle the two types of previews on or off.

Since that change significantly complicated the user interface and the source code

of the application, I decided to leave it incomplete. In its current form this make the XSL

editor more effective for authoring XSL than testing and debugging XSL. Users can

preview their changes against an XML file by adding a reference to the XSL they have

authored and previewing that XML document in an XML parsing browser such as

Microsoft Internet Explorer.

Lack of Line Numbers, and Other Typical Editor Elements

The editor was created using a Microsoft common control called the Rich Text

control. This particular control is commonly dispersed on Windows machines and offers

comprehensive documentation for developers. It is proven stable and because it already

exists on many Windows machines improves the application's portability and ease of

installation.

The software market offers several high quality editor text controls that provide

more functions. There were several reasons not to develop against these other controls.

The text editor controls cost as much as $500 for unlimited distribution. Some controls

were offered by companies or individuals for which there is no indication that they will

continue to do business or provide support for their software. The Microsoft controls

offer proven support, and are provided by a company with a clearly stable future.

 69

Likewise the software has proven its stability through repeated use, where trial versions

of other text controls evidenced unexpected and erratic behavior.

Successive versions of the applications should consider the investment in a more

capable text editing control. The control provided by Anthony Dunleavy, for example,

may be a good choice for a more finished application. Dunleavy’s control is described as

a rich text code box providing a line number indicator and advanced code-editing

functions.

 70

Implementation

WYSIWYG Editor Only Supports HTML

For demonstrative purposes, the editor only supports WYSIWG editing of HTML.

Future enhancements would require the additional support of other browser viewable

markup languages. This task will require considerable research and coding which exceeds

the scope of this project.

The Applications Only Supports the “XSL” Namespace

Technical limitations in the Microsoft parser require that only “XSL” namespace

and namespace declaration be used. Microsoft’s parser did not support the simple

substitution of a DOM document’s namespace declaration or a specific tag's declaration.

A significant amount of code was produced simply to support accurate communication of

parse errors that relate to namespace errors. When Microsoft’s parser supports write

access to the namespace object, a significant amount of that code can be removed. At that

time, the editor will be able to support any namespace a user decides.

The inability to use anything but the XSL namespace, also simplifies the editing

process. The theories involved in namespaces may be complicated for novice users. This

limitation therefore contributes to the program’s simplicity of use.

 71

Relies on Temp Files for WYSWIG and Preview Mode

The program relies heavily on temporary files to support WYSIWYG editing and

document previews. The free Microsoft software that allows this functionality is file

based. AS such, files have to be created to allow users to edit or preview their changes.

Future development may afford investment in higher quality software infrastructure to

support WYSIWYG editing and preview independent of temporary files.

Does Not Support Axis Queries

The program only supports simple XPath queries. Help in creating axis-based

queries is not supported, but the program will support such queries if they are entered into

the editor. Creating an axis query builder was too complicated and time consuming for

the demonstrative nature of this project.

Limited XPath Control and Query Structuring

The application prototype endeavors only to demonstrate the potential in its

design. The sample XPath generated by the application is not means to demonstrate the

full breadth of reasonable queries. As such, queries are inserted using the default XSL

value of element. In practice, such queries would have optional parameters specifying

the kinds of XSL element to use with the specified query. A list of radio buttons for

example, would allow the user to specify whether they want to insert a template query, an

XSL for-each query, an XSL copy-of query or other related elements. Future

development of the application would require a more complete effort in this direction.

 72

XPath Queries Only Supported in Edit View

 XPath builder is only support in the edit view for this implementation of the

editor. Future implementations should offer the XPath builder utility in the design view.

This additional functionality was left out to simplify development of the prototype.

Lack of Intellisense Generic Solution

Many successful IDEs and editors provide a user-prompting element commonly

known as Intellisense. The device is used frequently. When a user edits source code, the

IDE displays a list of context sensitive prompts. If for example, a user types the

beginning of a font tag in HTML, an Intellisense capable editor would list all of the

attributes available for the font tag. The user can then select an attribute from the list of

available attributes. The foundation for Intellisense enabled editing is already a part of

this prototype. In this implementation a Visual Basic Combo box control is populated

with al of the available tags. Unfortunately, the design requires a way to dynamically

locate a control based on the position of the user text cursor. The Microsoft Rich Text

control does not provide programmatic information to coordinates of the active cursor.

The Windows user API information does provide X and Y coordinates of the active

mouse, but locating the Intellisense prompter to the mouse pointer location would only

create confusion. For demo purposes, the Intellisense device is disabled in the prototype.

When considering the alternative text editing controls, the requirements of Intellisense

device as designed will be considered.

 73

 Summary

The purpose of this project was to explore the possibility of creating an extensible

style sheet editor for a specific set of development needs. These development needs

included:

• Developers who understand the fundamentals of markup languages but
are not versed, or do not have the time to be trained, in the specifics of
XSL development.

• Small development projects, that wish to exploit the benefits of XSL

development without the staffing expense of hiring an XSL developer,
or training developers to learn more XSL than they expect to use.

• Developers using low memory devices or with special requirements

not met by the more widely used XML and XSL authoring tools.

The existing XML and XSL authoring software fails to meet these development

needs. The existing software is limited in variety, usability, and value. Software

applications such as Xmlspy® demonstrate design decisions targeted toward meeting the

needs of experienced, well-educated XML developers. These applications require a

considerable amount of background before an individual user can effectively use them.

The XSL editor produced by this project demonstrates the possibility of a program that is

simpler to use and continues to offer the core functionality that the development

community requires.

 Research into the standards of XML, authoring XSL, and related technologies

was conducted to guide the project’s efforts. The examination of an evolving set of

markup standards calibrated the program’s design toward extensibility and flexibility.

These design principles help to ensure the durability needed for an XSL editor that

 74

supports multiple markup languages. In implementation, the program uses the extensible

mark up language as a data resource for the retrieval of markup standards. This provides

great benefit because developers will be able to tailor the application to their specific

needs without the complications of installing additional software, using a macro recorder,

or recompiling the application source code.

 While this application is merely a prototype it succeeds in demonstrating that a

simple approach ads benefit. There are a myriad of enhancements that should be

implemented when the project is moved beyond the prototype stage. These are described

in detail within the limitations of scope section of this document. The most notable of

these enhancements include an improved graphical user interface, a more compressive set

of tools for the graphical editing of XSL, and the potential conversion of this project from

a Visual Basic 6 to .Net Technologies or Embedded Visual Basic.

 75

Appendix A

Visual Basic 6.0 Source Code

(Code not provided in this digital copy of thesis)
Source code provided on compact disc

 76

Annotated Bibliography

Altova, The Xmlspy Suite, 5 May, 2003
<http://www.altova.com>

 Altova.com is the official website of the software manufacturer for the Xmlspy
and Stylus Studio products. The manufacturer discusses the design goals and
target audience for these products through marketing materials and information.
The website provides information about Altova's intentions in developing and
marketing the Xmlspy suite of software.

Begg, Carolyn and Thomas Connolly(2002), Database Systems, Essex, England:Addison
Wesley
 Connolly and Beg discuss the fundamentals of database design, history, and

implementation. The book introduces the benefits and pitfalls of using database
systems. Core topics relevant to the research of this project included:

- Relational models
- Database analysis and design
- Emerging Trends
- Semi structured Data and XML

Britt, James and Teun Duynnstee, Profesional Visual Basic 6 XML, Birmingham, UK:
Wrox Press, 2000
 An overview of the core concepts and practices for programming applications

that use XML from within the Visual Basic 6 environment. The authors
demonstrate best practices and provide essential source code. Core topics
covered by the book include:

- Introduction to XML
- XML Document object Model
- Maximizing Performance of XML Applications
- Storing and Retrieving XML Data

Hunter, David, Kurt Cagle, Chris Dix, Roger Kovack, Jonathan Pinnock, Jeff Rafter,
Beginning XML,Birmingham, UK: Wrox Press 2002

 This book gives provided a fundamental overview of XML and related
technologies. The publisher provides a website that offers source code for
developing applications using XML and related technologies. The SAX parsing
class used in the XSL editor was obtained from that website.

Kirtland, Mary, Designing Component Based Applications. Washington: Microsoft Press,
1999

 A detailed overview of Microsoft’s Component Object model as it relates to
development in C++ and Visual Basic 6. The book offers instruction on the core

 77

concepts of designing component based applications and best practices in
implementation.

Microsoft Software Developers Network, XML Development, 29 April 2003
<http://msdn.microsoft.com/xml/default.asp>

 The Microsoft Software Developers Network (MSDN) is an online resource for
software developers using Visual Basic, C++, XML and a wide variety of other
languages. The MSDN website provides sample code and technical data about
Microsoft’s software. This includes information about specific controls,
components and known issues in software.

Stylus Studio, Sonic, Vers. 5
 2003, Windows XP, download
<http://www.sonicsoftware.com/cgi-bin/sonic.cgi/download_menu>

Sonic Stylus studio is a relatively popular XSL authoring tool. By installing the
program and experimenting with its interface, I was better able to judge the
quality of the application.

Stylevision, Altova, Vers. 5
 2003, Windows XP, download
< http://www.xmlspy.com/products_xsl.html>

Stylevision is part of the Xmlspy suite provided by Altova software. Stylevision
is not nearly as popular as Xmlspy, but the product’s main goals are similar to
this project’s goals. The software is aimed at easing the process of developing
XSL documents. By installing the program and experimenting with its interface,
I was better able to judge the quality of the application.

Redish, Janice C., User and Task Analysis for Interface Design,

New York:.Wiley, 1998

This book has a few chapters on best practices in user interface design and
development. Although the book’s primary aim is to introduce concepts of task
analysis, it provides a reasonable amount of information about the designing for
usability.

Source Forge .Net, XML Projects, 5 May, 2003
<http://sourceforge.net/>

 Source Forge is one of the largest collections of open source software on the
Internet. Last reviewed on May 5, 2003, this website maintains a database of
major open source software initiatives. Source Forge was the primary resource
for identifying XSL related software available in the open source community.

 78

The World Wide Web Consortium, Extensible Markup Language, 10 April 2003
<http://www.w3.org/XML/>

 The World Wide Web Consortium (W3C) provides information on standards
development for a range of Internet protocols and standards. The W3C
recommendations provide detailed information about particular technologies
and the concepts behind standardizing decisions. The W3C’s XML
recommendation informed much of the XML research for this project.

The World Wide Web Consortium, Extensible Markup Language, 15 April 2003
<http://www.w3.org/Style/XSL/>

 The W3C’s XSL recommendation informed much of the XSL research for this
project. The website provided the library of XSL tags in XML format and
guided development of the XSL editor.

The World Wide Web Consortium, Document Object Model, 15 April 2003
<http://www.w3.org/DOM/

 The W3C’s Document Object Model recommendation informed much of the
DOM research for this project. It also framed an understanding of the Microsoft
implementation of the DOM and indicated potential short fallings in Microsoft’s
design.

The World Wide Web Consortium, Markup, 5 May 2003
<http://www.w3.org/MarkUp/>

 The W3C’s markup recommendation informed much of the markup research for
this project.

The World Wide Web Consortium, XPath, 12 May 2003
http://www.w3.org/TR/xpath

 The W3C’s XPath recommendation informed much of the XPath research for
this project. The website’s explanation of the XPath language helped in
developing the software to create XPath queries.

W3 Schools, XSL Tutorial, 11 April 2003
<http://www.w3schools.com/xsl/default.asp>

 The W3C schools are a tutorial-based collection of web pages designed to aid in
the instruction and understanding of W3C standards. These tutorials provide
vender independent perspective on implementing W3C standards in software.
The XSL tutorial was useful in establishing a basic understanding of the
technology.

W3 Schools, DOM, 20 April 2003
<http://www.w3schools.com/dom/default.asp>

 79

 Another section of the W3C School website, this DOM tutorial provided a
basic, platform independent discussion of DOM technology

W3 Schools, DOM, 20 April 2003
<http://www.w3schools.com/xhtml/default.asp>

 Another section of the W3C School website, this XHTML tutorial provided a

basic, platform independent discussion of XHTML technology. Some of the
research presented here was derived from this XHTML tutorial.

XML Spy, Vers. 5, Altova
 2003. Windows XP, download
< http://www.xmlspy.com/products_ide.html>

 Xmlspy is the leading IDE for XML development. By installing the program
and experimenting with its interface, I was better able to judge the quality of the
application.

